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In this paper we analyse in detail, and for the first time, the r61e of torsion in the 
dynamics of twisted vortex filaments. We demonstrate that torsion may influence 
considerably the motion of helical vortex filaments in an incompressible perfect fluid. 
The binormal component of the induced velocity, asymptotically responsible for the 
displacement of the vortex filament in the fluid, is closely analysed. The study is 
performed by applying the prescription of Moore & Saffman (1972) to helices of any 
pitch and a new asymptotic integral formula is derived. We give a rigorous proof that 
the Kelvin rCgime and its limit behaviour are obtained as a limit form of that integral 
asymptotic formula. The results are compared with new calculations based on the 
re-elaboration of Hardin's (1982) approach and with results obtained by Levy & 
Forsdyke (1928) and Widnall (1972) for helices of small pitch, here also re-elaborated 
for the purpose. 

1. Introduction 
Many computational simulations show (Siggia 1981; Kerr 1985; Vincent & 

Meneguzzi 1991; Kida 1993) that highly twisted vortex tubes constitute a funda- 
mental structural element in the evolution of turbulent flows. Experimental evidence 
(see, for example, Hopfinger, Browand & Gagne 1982; Leibovich & Ma 1983; Max- 
worthy, Hopfinger & Redekopp 1985) and numerical results (see, for example, She, 
Jackson & Orszag 1990; Lesieur 1991; Boratav, Pelz & Zabusky 1992) show clearly 
that torsion of vortex tubes plays an important r61e in three-dimensional vortex 
evolution. Torsion is the essential geometric property of structures that are truly 
three-dimensional and is certainly important in regions of high helicity and high 
twisting of vorticity lines. In particular, it has been observed (Hopfinger et al. 1982; 
Leibovich & Ma 1983) that torsion may have a significant effect on the dynamics of 
twisted vortex filaments. In this paper we demonstrate, for the first time, that indeed 
torsion may influence considerably the motion of helical vortex filaments. 

The study of the motion of helical and generally twisted vortex filaments in an 
incompressible perfect fluid has a long history. A first study of the dynamics of 
slightly twisted vortex filaments was carried out by Lord Kelvin (1880) for helical 
vortex filaments of very large pitch (i.e. very large wavelength). Some time later, Levy 
& Forsdyke (1928) considered the case of helices of small pitch. A great deal of 
difficulty in the analysis is due to the treatment of the logarithmic singularity present 
in the Biot-Savart integral. To see this, let us denote by u = u ( X )  the velocity induced 
by a helical vortex filament Z at a neighbouring point X and let X' = X'( s )  be the 
helical vortex filament axis (s being arclength). For simplicity, let us assume that the 
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vorticity w ( X * )  = coot, with coo = constant and t the tangent to X‘, be uniformly 
distributed across a circular cross-section of area no2 and vortex core circulation 
K = w0no2. The induced velocity is given by the Biot-Savart law 

t (X’ )  x (X - X’) 
u ( X )  = - ds. 

A simple and direct calculation of (1.1) for a thin vortex filament was given by 
Batchelor (1967, p. 510). Batchelor’s formula gives the asymptotic velocity 

K K L  
u(‘) = -4 + - In - b + Q f ,  

271o 4nR o 
where (T denotes distance from the filament axis in a normal plane, q is a rotational 
unit vector about the filament axis, R is the local radius of curvature, L is a length pa- 
rameter that takes into account the short-range inductive effects due to neighbouring 
parts of the vortex filament ( D  < L4R),  b is the binormal vector to the filament axis 
and Q, denotes the finite-term contribution due to the induction of distant parts of 
the vortex filament. L and Q, are left undetermined in Batchelor’s formula. Evidently, 
the first term in the right-hand side of (1.2) yields a rotational motion about the vortex 
filament axis, with no contribution to the relative displacement of the vortex in the 
fluid, while the second term yields a displacement of the vortex filament along its 
local binormal direction, and depends, in first approximation, on the circulation and 
the geometric properties of the vortex filament centreline. The binormal component 
of the drift velocity dn) = u(‘’ - [1c/(2no)]q can be written in dimensionless form (i.e. 
dividing by the reference velocity ~ / 4 n R ) ,  and is given by 

L A  R fit) = In - + ef.b = In - + C, 
(T o 

where C, a function only of the geometry, denotes the remainder term. 
From a historical point of view it is interesting to note that equation (1.2) was 

actually derived by Levi-Civita (1932, p. 26, equation 6) as a particular case of a 
slightly more general equation found in his study on vortex filaments. 

The logarithmic singularity that arises in (1.3) as o + 0 is trivially avoided if 
the Biot-Savart integral is evaluated at some finite distance from the vortex filament 
axis, with an approximate estimate of the induced velocity. An alternative solution 
is offered by the so-called ‘cut-off’ technique (Crow 1970). Based on the fact that 
the velocity of a vortex ring is completely known (Fraenkel 1970; Saffman 1970), the 
‘cut-off’ method consists of ‘de-singularizing’ the Biot-Savart integral by removing a 
small arc interval which contains the singularity, and replacing its contribution by 
the corresponding (known) contribution of the osculating vortex ring. The stability 
of helical vortex filaments of small pitch was investigated by Widnall (1972) using the 
‘cut-off’ approximation and numerical integration. 

Following the idea of balancing the fluid dynamical forces that act on a vortex 
filament (Widnall & Bliss 1971; Widnall, Bliss & Zalay 1971), Moore & Saffman (1972) 
proposed an analytic prescription for evaluating Biot-Savart. It is based on the idea 
of de-singularizing the Biot-Savart integral in an analytical way, by subtracting and 
adding the contribution given by a (virtual) osculating circular vortex filament with 
the same local vortex core properties. A comparison between the velocity calculated 
by the cut-off approximation and that calculated using this latter prescription showed 
(cf. Moore & Saffman 1972, p. 417) that the two methods are almost equivalent 
when axial velocities within the vortex tube are not present. The Moore & Saffman 
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prescription, however, has not been used so far, and its application is presented here 
for the first time. 

An explicit analytic solution for the velocity field induced by a helical vortex 
filament, evaluated at distant points in the interior and exterior of the circular 
cylinder on which the helix is inscribed, is due to Hardin (1982). Hardin’s approach is 
based on a suitable transform of the Biot-Savart integral and can capture higher-order 
effects; however, he made no effort to give the velocity an asymptotic expression and 
only recently (Ricca 1992, 1993) has a full numerical investigation of the asymptotic 
behaviour of this velocity field been carried out. Several other equations of motion 
able to capture a variety of physical aspects (for example in the presence of axial 
and swirl velocities, vortex core perturbations, viscous effects) have been presented 
in the literature (Callegari & Ting 1978; Adebiyi 1981; Fukumoto & Miyazaki 1991; 
Lundgren & Ashurst 1989; Marshall 1991; Klein & Majda 1991), but the methods 
discussed above remain fundamental. 

In this paper we analyse in detail, and for the first time, the r6le of torsion in 
the dynamics of twisted vortex filaments. We demonstrate that torsion may influence 
considerably the motion of helical vortex filaments in an incompressible perfect fluid. 
The work is organized as follows. In $ 2  we recall some basic geometric relations. In 
particular, we consider a one-parameter family of helices of equal curvature (which 
is kept constant) and different torsion. In $ 3  we apply the prescription of Moore & 
Saffman to study helices of any pitch. The asymptotic velocity of the helical vortex 
filament is decomposed into intrinsic components and a new integral asymptotic 
formula for the binormal component of the induced velocity is found as a function of 
the geometry alone. We present calculations based on this new formula and, in $3.1, 
we give a rigorous proof that Kelvin’s rigime is obtained as a limit form of this 
integral formula for helices of large pitch. 

A full comparative analysis of these new results is carried out in $4. New calcula- 
tions based on the re-elaboration of Hardin’s (1982) approach are presented in $ 4.1, 
together with a brief discussion of the two limit cases represented by the rectilinear 
vortex filament (when the pitch tends to infinity) and the circular cylindrical vortex 
sheet (when the pitch tends to zero). Results obtained by Levy & Forsdyke (1928) 
and Widnall (1972) for helices of small pitch are then re-elaborated and presented for 
comparison (9 4.2). The agreement between different treatments is satisfactory and 
proves a clear influence of torsion on the vortex filament motion. The conclusions are 
summarized in $ 5. 

2. Geometric relations for a helical vortex filament 
Let us consider an infinite right-handed helical vortex filament embedded in an 

incompressible perfect fluid at rest at infinity. For the sake of simplicity the study is 
carried out by assuming that the tube-like vortex has a core of circular cross-section, 
whose radius is negligible compared with the local radius of curvature, and that the 
vorticity is (instantaneously) uniformly distributed across the circular cross-section 
and directed everywhere parallel to the tangent to the vortex filament centreline 2. 
This centreline is represented by the helix X* = (x, y ,  z )  

x = YO cos a, y = ro sin a, z = pa, (2.1) 

where YO is the radius of the circular cylinder on which the helix is inscribed, a is the 
polar angle, and p is the (reduced) pitch of the helix (that is the distance between 
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Z 

S = O  

FIGURE 1. Geometry of the helical vortex filament. 

two consecutive coils measured in the direction parallel to the z-axis, divided by 2x) 
(figure 1). In cylindrical polar coordinates X is labelled by X' = (ro, a, z ) .  

The arclength s of 2 is given by 

s = a (r02 + p 2 )  1 (s = 0 for CI = 0), (2.2) 

so that, after substitution of (2.2) into (2.1), we can write the curve in intrinsic form 
X' = X'( s )  and determine the intrinsic reference frame (the Frenet frame) ( t ,n ,b)  
(Willmore 1959). By definition of unit tangent we have 

S S t = X ' = - - - -  
ro2 + p 2 )  ro2 + p 2 )  ' 

where the prime denotes differentiation with respect to arclength. By further differ- 
entiation, we have the unit normal 

and binormal 

P S S 
b = t x n =  

(ro2 + p 2 )  4 ro2 + p 2 )  ' ro2 + p 2 )  

This triad will be useful below in decomposing the velocity field into intrinsic com- 
ponents. 

The circular helix is determined by the curvature 
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and, by the third of the Frenet equations b' = -zn, the torsion 

z E (-0O,0O). (2.7) 
P z = -  

ro2 + p2' 

For right-handed helices we assume (without loss of generality) p > 0, and so z > 0. 
The pitch angle 6 (which measures the slope of the helix), is given by 

(2.8) 
P z  tan6 = - = -. 
ro c 

Let c (> 0) denote the radius of the circular cross-section of the vortex filament, E 
the thinness parameter and Z the dimensionless torsion defined by 

(2.9) 
c 

E = - ( E  << l), and Z=zR (ZE R+). 
R 

It is worth mentioning the case of minimum pitch (minimum distance between two 
consecutive coils of the helix, measured in a direction parallel to the z-axis). Evidently 
zmin = 2npmin = 20, or pmin = c/n. From (2.6) we have 

R > r a ( l + $ )  = r o  [ 1 + ( & ) 2 ] .  

Since R > ro and Z = p / r o ,  we can also write 

(2.10) 

(2.11) 

A family of helices X c  = X , ( z )  having equal curvature and different torsion may 
be found by keeping the curvature constant: from (2.6), (2.7) and for c = 1/R = 
constant , Xc(Q) is parametrized by 

(2.12) 

where io = ro/R and 8 = p/R. Note that 8 = b(Z) is quadratic in the argument and 
has two zeros as Z -+ 0 and Z --f 00, so that the helix degenerates to a straight line (in 
a rather peculiar manner) when 

as Q --f 00. 
fi-l/Z, and i0-1/Z2 

3. The prescription of Moore & Saffman applied to helices of any pitch 
We apply the prescription of Moore & Saffman (1972) to study the influence of 

torsion on the motion of helical vortex filaments of any pitch. With the assumptions 
made, the induced velocity at XO E X (from Moore & Saffman 1972, equation 9.5, 
with V E  = W = v = 0, V I  = U I  and p = 1) is given by 

with to = dX,/dso; Xo is the osculating circle at X O  E 2 (where s = so = 0, a = 0), 
and uo is its velocity (see figure 2). 
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FIGURE 2. Geometric interpretation of the prescription of 
field due to a helical vortex filament can be decomposed 
(c) adding an osculating vortex ring. 

Moore & Saffman (1972). 
in two parts, given by ( b )  

( a )  The velocity 
subtracting and 

The helix 2 is given by (2.1), with tangent, normal and binormal given by (2.3)- 
(2.5); curvature and torsion are given by (2.6) and (2.7). At a = 0, X = XO = (ro,O,O) 
and 

( 3 4  

} da. (3.3) 

I to = t(x0) = (yo2 + p2) - f  (0, ro, p ) ,  

no = n(X0) = (-l,O,O), 

bo = ~ ( x O )  = (ro2 + p2)-f (0, -p, 10). 

Let us evaluate the first integrand in (3.1). Since X’ = (rocosa,rosina,pa) and 
tds = dX’, we can write 

-a cos a + sin a 
1 -cosa-asina { (ro/p)[sin’ a - (1 - cos a) cos a] 

dX’ x (Xo  - X ’ )  = r o ~  

We are interested in the contribution to the induced velocity at XO along the 
binormal direction; by (3.2) and (3.3) we have 

bo.[dX’ x (XO - X’)] = 
ro 

[P’a sin a + (ro2 - p2) (  1 - cos a)]da. (3.4) 
(Yo’ + p’) 

Also 

1x0 - X’ 1’ = 2r02(1 - cos a) + p2a2, (3.5) 
so that 

ro p2a sin a + (ro2 + p 2 ) ( 1  - cos a)  
__ da. (3.6) 

[2r02( 1 - cos a) + p2a2] 

bO.[dX’ x (XO - X’)] 
lx0 - x73 ~ __ 

(,’ + p’) f 

Note that near a = 0, sincc - a and cosa - 1 - a2/2 so that the right-hand side of 
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(3.6) behaves like 

247 

(3.7) 

characteristic of the logarithmic singularity at a = 0. 
Let us now evaluate the second integrand in (3.1). At the point of osculation we 

identify s = 0 (a  = 0) on the helix with so = 0 (a, = 0) on the osculating circle. 
By definition of osculation (i.e. the same tangent and the same centre of curvature) 
we need to have the same Frenet frame (to,no,bo) at XO and the same intrinsic 
description. With reference to figure 2(b), so = s E [-nR,nR] denotes arclength on 
the osculating circle X o .  Moreover, since s = a (ro2 + p2) on the helix and so = Rao 
on the osculating circle, so = s yields 

a. = a [I + (p/ro)21' = a (1 + P)' for a E [--n, n]. (3.8) 

The osculating circle V, lies in the (to,no)-plane and is centred at 

X, = Xo + -no 1 = (ro,O, 0)  + ___ Q2 +P2(-l,o,0) = 
C TO 

(3.9) 

A point X, E go is given by 

Xo = --,O,O + -(tosina, -nocosa,) ( t b :  ) :  

so that 

(3.11) 
- roda, 

1 '  
- 

bo.dXo x (XO - X,) 
ix0 - x013 2i(ro2 +p2)(1- C O S ~ , ) ~  

Note that near a, = 0 (= a = 0) equation (3.11) behaves like 

roda, ro da, 

21 (ro2 + p2) (1 - cos ao)j 2(ro2 + p 2 )  clo' (3.12) rv 

which coincides with the right-hand side of equation (3.7). 
We can now calculate the binormal component of the velocity at X = Xo. Taking 

the integral in (3.1) can be rewritten as 

since g(so) is defined only on the osculating circle (where s = so). 

with velocity (Fraenkel 1970; Saffman 1970) u,, given by 
In the case of uniform vorticity distribution, the osculating vortex ring propagates 

(3.13) 
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t 
I? I ,  .z 

0.1 
0.3 
0.5 
0.7 
0.9 
1.1 
1.3 
1.5 
1 .I 
1.9 
3.0 
4.0 

-0.0090 
-0.0820 
-0.2090 
-0.3660 
-0.5261 
-0.6733 
-0.1979 
-0.8976 
-0.9146 
-1.0335 
-1.2530 
-1.4200 

3.292 
0.505 
0.089 
0.002 

0 
0.000 

0 
0.000 

0 
0 
0 
0 

5.0 -1.5250 0 

-2 -1- 
0 1 2 3 4 5 

a 
FIGURE 3. 11 and 1 2 ,  given by equations (3.16) and (3.17), plotted against dimensionless torsion 9. 

Thus, by (3.6) and (3.11), the binormal component of (3.1) takes the form 

(3.14) 
1 

Bb = B(Xo).bo = In - + CMs = 2(Z1 + Z2) + B0,  
E 

where 
(3.15) 

denotes the remainder term obtained by applying the prescription of Moore & 
Saffman, and where I1 and 12 ,  rewritten in terms of dimensionless torsion, are given 

CMs = CMs(5) = 2(11 + Z2) + In 8 - 

by 

and 

?*a sin a + (1 - t2)( 1 - cos a) 

[2( 1 - cos a) + (by] 
da. 1 2 =  7 ( 1 + 2 )  

(3.16) 

(3.17) 

lt( l + i 2 ) f  

Note that I1 is convergent at a = 0 and 1 2  is convergent at a = co. The functions 
Il(?), 12(?) ,  obtained by nunierical integration, are shown in figure 3. 

3.1. Derivation of the Kelvin rkgime from the Moore & Saflman prescription: 
helices of large pitch 

Kelvin (1880; hereafter denoted by K) considers the case of 5 9 1  (helices of large 
pitch) and ro6o (see figure 4), where a helical vortex filament of large wavelength is 
obtained by a linear perturbation from a columnar vortex. The disturbance is given 
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FIGURE 4. Perturbation from a co'lurnnar vortex according to Kelvin (1880). 

by 
r = cr + ro cos yz sin (nt - me),  (3.18) 

superimposed on the boundary of the vortex core. In the limit Q + 00, Kelvin 
considers the case of uniform vorticity distribution (case I11 in K, where a = cr, 
m = y = p-' and o = rc/27ccr2) and he finds (p. 167, equation 61) that the angular 
velocity (-n in K) with which the disturbance travels round the original vortex is 
given (to leading order) by 

(Q +l), (3.19) 

where 0.1159.. . = - In 2-E and E = 0.5772.. . is Euler's constant. Since Q - fi-' = yR 
as Q + 00, we have 

(3.20) 
1 1 
E 4 &,=ln-+CK : C K  = C K ( t ) = - l n ? + - + 1 n 2 - E  (5%-1), 

where CK denotes the remainder term obtained by K. 
The following result can now be proved. 

LEMMA 1. lim+,m CM.~S = CK.  

ProoJ Let us consider the integrands in (3.16) and (3.17). For Q+l  we have 

A2 i Q2asina+(1 -Q2)(1 -cosa) as ina-(I  -cosa) 
a3 

N = F(a) ,  F(a) = (1 + z ) 
[2(1- cos a) + (ta)21 S 

(3.21) 
and for 0 d a d a0 (a041) 

(3.22) 
1 

' 2a - - =  Gb); 
1 

G(a) = 

a/ (1 + 2 2 ) i ) j ) I  
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thus we can write 

a0 x i  m 

11 + 12 - / [ F ( N )  - G(a)] da + / [ p ( a )  - G(a)] da + / F(a)da. 
0 ao nf 

(3.23) 

Contributions from the first and the third integrals in the right-hand side of (3.23) 
are certainly negligible: for values near a = 0, we have 

lim[F(a) - G(a)] = 0, (3.24) 
a-0 

while for a 2 nZ (Zs-1) we can write 

(3.25) 

ni n4 

which is negligible for Zs-1. Hence 

lim(1I + 1 2 )  = !im [ f ( a )  - G(a)] da 
i-tm T’m J 

ao-0 

da 
da - !im 7 , . (3.26) 

as ina-(1 -cosa) 
= lim - 

T’ffl 
ao+O i a3 cco-ro a. 2 ; ~  [I - cos (a /?) ] ’  

a0 

The first integral in the right-hand side of (3.26) can be expressed by means of integral 
representations of Euler’s constant (Gradshteyn & Ryzhik 1980, 3.783.1 and 8.367.Q 
i.e. 

(3.27) a sin a - (1 - cos a) 
a3 

a0 

while for the second integral we have 

4 2  

dy, - ~ { l n ~ + 2 1 n 2 - l n a o + 0  [(?)’I}. (3.28) 

a0124 

Thus, by (3.15), we have 

lim CMs = !im [2(11 + 1 : ~ )  + In 8 - f ]  = !im (- In Z + + In 2 - E) = CK (3.29) 
i-rm T”) T - t f f l  

which proves the statement. 
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4. Comparative analysis and numerical results 
4.1. Analysis based on the re-elaboration of Hardin’s approach 

Hardin’s (1982) approach is based on a particular transform of the Biot-Savart 
integral (decomposed in Cartesian components) and the derivation of the velocity 
field in cylindrical polar components ur,u,,u, in the region interior ( r  < ro) and 
exterior ( r  > YO) to the cylinder on which the helix is inscribed (see equations 8 and 9 
of Hardin’s paper). In order to determine the induced velocity at points asymptotically 
near the vortex filament centreline, we consider the points which lie on the helical 
surface given by a0 = a’-z /p  = 0 (a* denotes the polar coordinate; a0 = w and a’ = 4 
in Hardin’s notation). By (2.3)-(2.5), the velocity field u = u,(-i sin a + j cos a) + u,k 
can be rewritten in intrinsic components (ut, un, u b ) ,  that is 

The relative displacement in the fluid is given only by ub, while ut yields pure tangential 
motion along the helix. Thus, by equation (8) of Hardin, the binormal component of 
the velocity for the interior region is given by 

while, using equation (9) of Hardin, for the exterior region we have 

(4.3) 

P(r,O) and l ( r , O )  are series expressed in terms of (modified) Bessel functions of 
integer order and, in general, are functions of ro, p ,  r, a0 (cf. Hardin’s expressions). 

Two limit cases present themselves when ro -+ 0 and when p + 0 (in reality ro and 
p are bounded from below respectively by rO,min = D (> 0) and pmin = D/TC) .  

(i) Rectilinear uortexfilament. Let us consider the case ro + 0, for p fixed. In 
this case the helix approaches its central axis; ideally, if we let 0 + 0, then the 
rectilinear vortex filament solution is recovered. From (2.5) and (2.6), this yields 
limro-+O c = 0, and limro+O b = [sin(s/p),-cos(s/p),O] and from equations (4.1), as 
ro + 0, u, = u, = 0 and U, = 1c/2nr; thus, denoting by q the rotational unit vector, we 
have limrD+O u = [ ~ / ( 2 n r ) ] q ,  with the streamlines concentric circles about the central 
axis (see figure 5a).  

(ii) Cylindrical vortex sheet. Consider now the case p -+ 0, for ro fixed. In this case 
the coils of the helix are flattened down and packed together. As an ideal case, let 
D + 0: the cylinder in which the helix is inscribed becomes an infinite cylindrical 
vortex sheet and a circular cylindrical jet is realized (figure 5b). The velocity field is 
discontinuous across the vortex sheet: as p -+ 0, the arguments of the modified Bessel 
functions in the series of (4.2) (see the expression for 9(r ,O) = Sl(p ,O)  in equation 8 
of Hardin’s paper) tend to infinity, and the product of the series can be calculated by 
asymptotic expansions for large arguments (Abramowitz & Stegun 1965). To leading 
order and for ro > r ,  we have 

(1+ ...) =o. (4.4) I lim9(r,O) = lim 
P-+O 
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FIGURE 5. (a )  As ro -+ 0, keeping p fixed, the helical vortex filament approaches the z-axis and 
forms a rectilinear vortex filament. ( b )  As p -+ 0, keeping ro fixed, the coils of the helix are flattened 
down and form a cylindrical vortex sheet. 

Combining this result with (4.2) and taking the limit, we have 
lc 

lim U b  l r i r O  = lim - = +a. 
P-0 p-0 2np 

Similarly, we can evaluate the limit for the exterior region. We have 

lc 
limublrzro = -- lim 
P-+O nr p - r o  

(4.5) 

(4.6) 

so that asymptotically we have [ub] = (1c/2np) across the cylindrical vortex sheet. 

4.1.1. Remainder term of the binormal component of the velocity and numerical results 
The binormal component of the velocity can be evaluated asymptotically at two 

points P and Q lying on the exterior and interior boundary of the vortex core along 
the normal direction. In polar coordinates (r ,O) centred on the vortex core, the two 
points are given by: P = (ro + o,n) and Q = (ro - o,O). The remainder term C 
is determined by comparing equation (1.2) (using 1.3) with (4.2) and (4.3). Since 
ii'a'.6 = &, (where overhats denote quantities in dimensionless form), we have 

1 1 

(4.7) 
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At Q we have r = ro - ER and 6t’ = fir’ - 2 / ~ .  Let us consider the family of 
helices X c  = Zc(Q). After some algebraic manipulation, (4.2) can be rewritten in 
dimensionless form as follows: 

(1  + Q’)’ 4(1 - ~ ) ( 1  + ?2)i 2 
2(&, Q) - ;> - 

2 Q2[1 - &(l + P)] Clint = 2 

where 

(4.9) 
1 
z Q 

1 - &( 1 + Q2) 
m 

2(&,?) = ~ V K : ( v Z K ) r v ( v z l ) ,  ZK = 7, z1 = 
v = l  

Similarly for the velocity field at P ,  where r = ro + E R  and Cf) = @’ + 2 / ~ .  After 
some algebra, we have 

22 (1  + Q 2 )  ’ 4( 1 + E ) (  1 + Q2)i ~ ( & ,  Q) + E, 2 
- 

1 + & ( 1 + 4 2 )  Q2[1+&(1+52)] file,, = - (4.10) 

where 

v=l 

By (4.7), and using (4.8) and (4.10), we have 

Cint = Clint - In 1/& 
(4.12) 

where CH(&) denotes the remainder term obtained by the present re-elaboration of 
Hardin’s approach. 

Numerical evaluation of Cint and C,,, has been carried out (Ricca 1992, 1993) with 
a high degree of accuracy. Figure 6 illustrates the behaviour of the remainder term 
C versus the dimensionless torsion Q in the exterior and interior case (that is at P 
and Q )  for E equal to 0.1, 0.01, 0.001. Numerical instabilities due to the particular 
coupling of E and 3 have been noticed outside a certain range of .Z and have limited 
considerably the investigation. 

In any case the dependence of C on Q is clear and significant. In figure 6(a)  
( E  = 0.1) curvature and torsion are of the same order of magnitude and both 
influence C (although the leading-order effect on the displacement of the vortex 
filament is due to the local curvature). Note that the ‘interior’ and the ‘exterior’ curves 
are separated by a distance of the order of the diameter of the vortex cross-section, 
which is visibly decreasing as Q increases; at about ‘2 = 1, this is nearly equal to 
the dimensionless diameter of the vortex. The superposition of induced effects seems 
sensitive to the fact that the smaller Q is, the greater is the difference between the 
values of the corresponding streamlines in the interior and the exterior region. For 
smaller E the distance between the two curves tends to become smaller (figure 6b,c). 
Numerical instabilities become more relevant in figure 6(c), as we move away from 
the central region of the diagram. 

{ Cext = 61ext - In I/&, 

Cint + Cat 
= 3 

4.2. Re-elaboration of the results obtained by Levy & Forsdyke and Widnall 
for  helices of small pitch 

The results obtained by Levy & Forsdyke (1928; hereafter denoted by LF) and by 
Widnall (1972; hereafter denoted by W) for helices of moderate pitch (and by using 

9 F L M  273 
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FIGURE 6. Remainder term C plotted against dimensionless torsion 9. Interior and exterior field at 
boundary points for ( a )  E = 0.1; ( b )  E = 0.01; ( c )  E = 0.001. 
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different methods), can be re-elaborated for comparison. The results presented in LF 
and in W are given in terms of translational velocity ( V )  and rotational velocity (52) 
of the helix (with respect to a reference fixed with the z-axis). 

The binormal component of the velocity field expressed as a function of V and 52 
is given by 

I ( V - P Q )  
1 r0 

vb = In - + C = 
(ro2 + P2) I & 

(4.13) 

(note that the rotational component about the vortex filament centreline does not 
contribute to the displacement of the vortex filament in the fluid); by different 
numerical methods, LF and W obtained V and 52 as functions of the tangent to 
the pitch angle. In particular, LF make the assumption (o/ro) = 0.1, which implies 
E = [10(1 + 32)]-1 (LF consider 0.25 < 3 < 1.25, hence 0.04 d E < 0.08). In our 
notation, we have 

and 

(4.14) 

(4.15) 

where P and fi are the dimensionless velocities read directly from the diagram 
presented in LF (p. 689, figure 2). By the relations above, we have 

cLF = cLF(+) = 2 (1  + 32) f ( 9 L F  - t f i L F )  - ln (1 + +2) - In 10, (4.16) 

where CLF denotes the remainder term obtained by LF (the overbar indicates that 
the assumption E = [10(1 + 32)]-1 has been made). 

Widnall uses the ‘cut-off’ approximation and numerical integration. The transla- 
tional velocity V (W, equation 54) in our notation is given by 

and the rotational velocity 52 (W, equation 5 5 )  by 

(4.17) 

(4.18) 

where 

and A = 
in W (p. 656, figure 3). 

form, we have 

(uniform vorticity). VAl and Ql are read directly from the diagram shown 

Substituting (4.17) and (4.18) into (4.13) and putting everything in dimensionless 

A 2  
1 (4.20) cw = cw(t) = o -1n - = (1 + 32) 4 ( v A ~  - t ~ l )  - 1n( l+  z + 7, 1 

& 

where Cw denotes the remainder term obtained by W. 
9-2 
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FIGURE 7. Comparative behaviour of C~(0.1), CWS, CW and CLF plotted 
against dimensionless torsion ?. 

4.3. Comparison of results 
A full comparison of the results is now possible. In figure 7, C~(0.1), CMS, CW and 
C L F  are plotted against Q for 0.1 < Q < 1.5. 

The dependence of the remainder term on Q is evident. Keeping curvature fixed, 
this means that the binormal component of the induced velocity decreases as torsion 
increases. For Z < 0.3 the difference between CW and CMS seems to increase 
notably; this discrepancy is not justified and must be probably due to errors that 
are associated with direct reading of data from diagrams or present in Widnall's 
numerical calculations (full agreement between the cut-off approximation and the 
osculating circle technique can be found also for small Q using equation 8, p. 214 of 
Saffman 1992). CMS and C~(0.1) behave very similarly for the full range of Q and 
remain closely parallel to each other. The small difference between the two curves 
remains almost constant (and approximately equal to 0.25) as Q increases (note that 
C,(E), E # 0, is not the limit curve). The curve C L F  must be considered as a case 
on its own because of the assumption E = [10(1 + Q2)]-l, and because of the limited 
accuracy of the original calculation (done by a planimeter). 

In figure 8, CH(E) ( E  = 0.1, 0.01, 0.001), CMS,  C, are plotted against -2, for a wider 
range of 2. Again CH(E) (E = 0.1, 0.01, 0.001) can be regarded as an estimate of the 
limit curve CH at E = 0. As expected, the Kelvin rkgime (&l) is recovered in full by 
C M S .  

5. Conclusions 
In this paper we have analysed in detail, and for the first time, the r61e of torsion 

in the dynamics of twisted vortex filaments. We have demonstrated that torsion may 
influence considerably the motion of helical vortex filaments in an incompressible 
perfect fluid. The binormal component of the induced velocity, asymptotically re- 
sponsible for the displacement of the vortex filament in the fluid, has been closely 
analysed. The study has been performed by applying the prescription of Moore & 
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FIGURE 8. Comparative behaviour of CH(E)  ( E  = 0.1, 0.01, 0.001), C M ~ ,  CK 

plotted against dimensionless torsion Q. 

Saffman (1972) to helices of any pitch and a new asymptotic integral formula has 
been derived. We have also proved that the Kelvin rhgime and its limit behaviour is 
obtained as a limit form of that integral asymptotic formula. The results have been 
compared with new calculations based on the re-elaboration of Hardin’s approach 
(1982) and with results obtained by Levy & Forsdyke (1928) and Widnall (1972) for 
helices of small pitch, re-elaborated for the purpose. The agreement between different 
treatments is satisfactory and reassuring. 

Although the influence of torsion may be regarded as a higher-order effect in 
determining the motion of twisted vortex filaments, nevertheless these results show 
that torsion can be as important as the distribution of vorticity over the cross-section 
of a vortex filament. The importance of this result is underlined by the fact that the 
presence of torsion is inherently associated with the three-dimensional character of 
vortex evolution and the high twisting of vorticity lines. Experimental measurements 
of i3b made by Hopfinger et al. (1982) and Leibovich & Ma (1983) that suggested that 
torsion effects had to be considered as O( 1) contributions to the dynamics of vortex 
filaments have been fully confirmed by our analysis. 
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